Linear-Time Approximation for Maximum Weight Matching

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simpler linear time 2/3 − ε approximation for maximum weight matching

We present two 3 − ε approximation algorithms for the maximum weight matching problem that run in time O(m log ε ). We give a simple and practical randomized algorithm and a somewhat more complicated deterministic algorithm. Both algorithms are exponentially faster in terms of ε than a recent algorithm by Drake and Hougardy. We also show that our algorithms can be generalized to find a 1 − ε ap...

متن کامل

Near Approximation of Maximum Weight Matching through Efficient Weight Reduction

Let G be an edge-weighted hypergraph on n vertices, m edges of size O(1), where the edges have real weights in an interval [1, W ]. We show that if we can approximate a maximum weight matching in G within factor α in time T (n,m,W ) then we can find a matching of weight at least (α − ǫ) times the maximum weight of a matching in G in time (ǫ) max 1≤q≤O(ǫ log n ǫ log ǫ−1 ) maxm1+...mq=m ∑q 1 T (n...

متن کامل

Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General Graphs

A new approximation algorithm for maximum weighted matching in general edge-weighted graphs is presented. It calculates a matching with an edge weight of at least 1 2 of the edge weight of a maximum weighted matching. Its time complexity is O(jEj), with jEj being the number of edges in the graph. This improves over the previously known 1 2-approximation algorithms for maximum weighted matching ...

متن کامل

An adjustable linear time parallel algorithm for maximum weight bipartite matching

We present a parallel algorithm for finding a maximum weight matching in general bipartite graphs with an adjustable time complexity of O( ω ) using O(nmax(2ω,4+ω)) processing elements for ω ≥ 1. Parameter ω is not bounded. This is the fastest known strongly polynomial parallel algorithm to solve this problem. This is also the first adjustable parallel algorithm for the maximum weight bipartite...

متن کامل

Linear-Time Approximation Algorithms for Finding the Minimum-Weight Perfect Matching on a Plane

We consider the problem of determining the minimum-weight perfect matching of n [even) points on a plane, i.e,, determining how to match the n points in pairs so as to rn~~ the sum of the distances between the matched points. This problem is of fundamental imFor%!nce in fmding the optimal sequence of drawing edges of a coM~ted graph by a rne~h~i~~ plotter; as is easgy confirmed, the wasted plot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2014

ISSN: 0004-5411,1557-735X

DOI: 10.1145/2529989